

Alternative Synthesis of TTF Donors with a Dioxolane Ring, and Synthesis of Their Dithiolane and Oxathiolane Analogues

Jun-ichi Yamada,^{a*} Rika Oka,^a Hiroyuki Anzai,^a Hiroyuki Nishikawa,^b Isao Ikemoto,^b and Koichi Kikuchi^b

^aDepartment of Material Science, Faculty of Science, Himeji Institute of Technology,
 1475-2 Kanaji, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
 ^bDepartment of Chemistry, Faculty of Science, Tokyo Metropolitan University,
 Hachioji, Tokyo 192-0397, Japan

Received 3 June 1998; accepted 7 August 1998

Abstract: Synthesis of the TTF (tetrathiafulvalene) donors with a 1,3-dioxolane, 1,3-dithiolane, or 1,3-oxathiolane ring (1-3) has been accomplished via the (MeO)₃P-promoted cross-coupling reaction of the corresponding new ketones (6-8) and thiones (9a-c). The radical-cation salts derived from 2a with AuI₂-, BF₄-, and AsF₆- exhibited metallic conducting behavior for single crystals.

© 1998 Elsevier Science Ltd. All rights reserved.

In the course of our search for the development of new molecular-based organic metals composed of the bulky TTF donors, we have found that the 1,3-dioxolane derivative of MET² (1a) produces a metallic TCNQ² complex even though the dioxolane ring is attached perpendicularly to the MET framework. This donor was synthesized via the Me₃Al-mediated rearrangement reaction, but its yield was relatively low. Ic,d The replacement of the outer ring oxygen atom(s) in 1a with the larger and more polarizable sulfur atom(s) can be expected to result in an enhancement of intermolecular S···S interactions in their CT² complexes. However, the dithiolane analogue of 1a (2a) could not be obtained by the Me₃Al-promoted reaction of the corresponding tin-masked dithiolate with an ester, since the analogous rearrangement as can be found in the synthesis of 1a did not take place. Ia,d This paper describes the synthesis of the dioxolane derivatives 1a-d via a different synthetic route and a synthetic approach to the construction of their dithiolane analogues 2a-d and the oxathiolane derivative of MET (3). We also disclose the electrochemical properties of new compounds (1b, 2a,b,d, and 3), the molecular structure of 2a, and the electrical conducting behavior of the 2a-based CT complex and radical-cation salts.

0040-4039/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. *PII*: S0040-4039(98)01679-7

Our strategy for synthesizing 1-3 was based on the (MeO)₃P-promoted cross-coupling reaction, and to this end, the preparation of new ketones 6-8 utilized for this reaction was developed. An excess of BF3-OEt2 (10 equiv.) was added to the dioxane-fused ketone 5, prepared from tin dithiolate 4 and 2,3-dichloro-1,4dioxane in the presence of 2 equiv. of BF3. OEt2, 1a,d in CHCl3, and the mixture was reacted at room temperature for one day. Isomerization of the bis-fused six-membered heterocylce to the five-membered biheterocycle progressed to afford the dioxolane-appended ketone 6 in 80% yield together with a trace amount of 5. The ratio of 6:5 determined by ¹H-NMR was 46:1.^{3,4} Further, the addition of 1,2-ethanedithiol in this reaction followed by stirring for two days gave the dithiolane-added ketone 7 in 95% yield. While conversion of 5 into the oxathiolane-appended ketone 8 could not be effected by the BF3-promoted reaction of 5 with 2mercaptoethanol even under prolonged reaction time, the analogous reaction of 6 in CH2Cl2 for two days gave 8 in 40% yield. The synthesis of 1a-c, 2a-c, and 3 was carried out by cross-coupling of the resulting ketones 6-8 with 2 equiv. of thiones 9a-c using (MeO)₃P as a phosphite reagent in toluene at 110 °C for 2 h (1a, 80%; 1b,⁵ 52%; 1c, 96%; 2a,⁵ 94%; 2b,⁵ 66%; 2c, 72%; 3,⁵ 83%).⁶ Demethoxycarbonylation of 1c and 2c was performed by heating with LiBr•H₂O (10 equiv.) in HMPA at 90 °C for 1 h, and then at 130 °C for 1 h. furnishing the dioxolane derivative of MDT-TTF² (1d) and its dithiolane analogue (2d)⁵ in 46% and 63% yields, respectively.

Oxidation potentials of 1b, 2a,b,d, and 3 were measured by using cyclic voltammetry, and the results are summarized in Table 1. For 2a,b,d and 3, three pairs of reversible redox waves were observed, whereas 1b showed three pairs of reversible redox waves and one irreversible oxidation wave. The E_1 value of the dithiolane derivative of MET (2a) is equal to that of the derivative of BMDT-TTF² (2b), and the derivative of MDT-TTF (2d) shows a lower E_1 value than those of 2a,b probably owing to the absence of the electron-withdrawing group, that is, the alkylenedithio group. The values of oxidation potentials (E_1 , E_2 , and E_3) for 3 are closer to those of 2a than those of 1a ($E_1 = +0.57$ V, $E_2 = +0.84$ V, and $E_3 = +1.58$ V). Ic,d

Table 1. Oxidation potentials of 1b, 2a,b,d, and 3a

Compound	E_I	E_2	E_3	E ₄	$\Delta E (E_2-E_1)$
1 b	0.53	0.76	1.38	1.56 ^b	0.23
2a	0.55	0.83	1.63		0.28
2 b	0.55	0.77	1.57		0.22
2 d	0.48	0.80	1.67		0.32
3	0.55	0.83	1.64		0.28

^aV vs. saturated calomel electrode (SCE); 0.1 M *n*-Bu₄NClO₄ in PhCN; Pt electrode; at room temperature; under nitrogen; scan rate 50 mV s⁻¹. bIrreversible wave.

An X-ray diffraction analysis of the neutral 2a was undertaken to compare with the molecular structure of 1a.⁸ As shown in Figure 1, 2a has a distorted structure, wherein the plane formed by two sulfur atoms and one carbon atom linking them in the 1,3-dithiolane ring is roughly parallel to the central tetrathioethylene medium plane of the MET molecule. The conformation of the dithiolane ring appended to MET evidently makes it nonplanar, but the whole molecular structure of 2a is less bulky than that of 1a.^{1c,d}

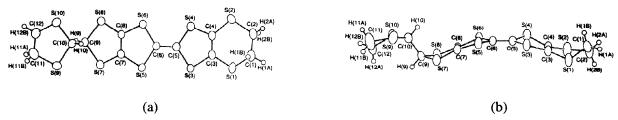


Figure 1. Molecular structures of 2a: (a) top view and (b) side view

The TCNQ compelex with 2a was obtained in a small amount by reaction between 2a and TCNQ (1 equiv) in TCE² at 80 °C for 2 h, although no complex was formed when the same reaction was carried out at room temperature overnight. In contrast to a metallic TCNQ complex of 1a, the room temperature conductivity for a single crystal of this complex, prepared by recrystallization from TCE with slow cooling, was very low $(\sigma_{rt} < 10^{-7} \text{ S cm}^{-1})$. On the other hand, the 2a-based radical-cation salts listed in Table 2 were accessible by controlled-current electrocrystallization¹⁰ in TCE containing the corresponding tetrabutylammonium salts, and their room temperature conductivities were $10^{-2} - 10^{1} \text{ S cm}^{-1}$. While compressed pellets of the I₃ and ClO₄ salts showed semiconducting behavior with small or relatively small activation energy, single crystals of the AuI₂, BF₄, and AsF₆ salts were all metallic, which underwent metal-to-semiconductor (or insulator) transitions. The temperature dependence of their resistances is shown in Figure 2.

Further investigation on the preparation of good single crystals suitable for X-ray crystallography and the development of other organic metals derived from the dichalcogenolane-added TTF donors is currently in progress.

Table 2. Conducting behavior of the radicalcation salts based on 2a

Anion	2a:Aniona	σ _{rt} / S cm ^{-1b}
I ₃ -	3:1	$3.2 \times 10^{-1c} (E_a = 15 \text{ meV})$
AuI_{2}^{-}	5:3	$13^{\rm d} ({\rm T_{MI}}^{\rm e} = 35 {\rm K})$
BF4-	2:1	$7.0^{\rm d} ({\rm T_{MI}} = 110 {\rm K})$
ClO ₄ -	_f	$9.5 \times 10^{-2c} (E_a = 58 \text{ meV})$
AsF_{6}	3:1	$19^{\rm d} ({\rm T_{MI}} = 60 {\rm K})$

^aDetermined by elemental analysis. ^bRoom temperature conductivity measured by a four-probe technique. ^cMeasured on a compressed pellet. ^dMeasured on a single crystal. ^eTemperature of metal-to-semiconductor (insulator) transition. ^fNot determined because this complex may explode during analysis.

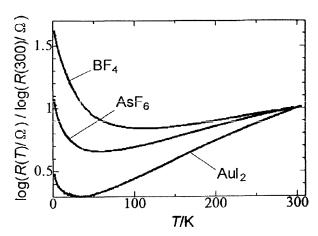


Figure 2. Temperature dependence of relative electrical resistance of the metallic 2a-based salts

References and Notes

- (a) Yamada, J.; Nishimoto, Y.; Tanaka, S.; Nakanishi, R.; Hagiya, K.; Anzai, H. Tetrahedron Lett., 1995, 36, 9509-9512.
 (b) Yamada, J.; Tanaka, S.; Anzai, H.; Sato, T; Nishikawa, H.; Ikemoto, I.; Kikuchi, K. J. Mater. Chem., 1997, 7, 1311-1312.
 (c) Yamada, J.; Hamasaki, M.; Jinih, O.; Tanaka, S.; Hagiya, K.; Anzai, H. Tetrahedron Lett., 1997, 38, 3439-3442.
 (d) Yamada, J.; Tanaka, S.; Segawa, J.; Hamasaki, M.; Hagiya, K.; Anzai, H.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K. J. Org. Chem., 1998, 63, 3952-3960.
 (e) Nishikawa, H.; Ishikawa, H.; Sato, T.; Kodama, T.; Ikemoto, I.; Kikuchi, K.; Tanaka, S.; Anzai, H.; Yamada, J. J. Mater. Chem., 1998, 8, 1321-1322.
- 2. Abbreviations used herein: MET = methylenedithio(ethylenedithio)tetrathiafulvalene; TCNQ = tetracyanoquinodimethane; CT = charge-transfer; MDT-TTF = methylenedithiotetrathiafulvalene; BMDT-TTF = bis(methylenedithio)tetrathiafulvalene; TCE = 1,1,2-trichloroethane.
- 3. The pure ketone 6 was obtained by recrystallization from CH₂Cl₂-EtOH.
- 4. The use of 10 equiv. of BF₃•OEt₂ in the reaction of 4 with dichlorodioxane under the same conditions furnished an 8:1 mixture of 6 and 5 in 89% yield.
- 5. Selected physical and spectroscopic data. 1b: mp 180 °C (dec); ¹H NMR (400 MHz, CDCl₃-CS₂) δ 5.19 (d, J = 5.4 Hz, 1 H), 5.07 (d, J = 5.4 Hz, 1 H), 4.99 (d, J = 9.8 Hz, 1 H), 4.88 (d, J = 9.8 Hz, 1 H), 4.05-3.94 (m, 4 H); MS m/z (% relative intensity) 428 (100, M⁺); calcd for C₁₁H₈O₂S₈ m/z 427.8290, measured m/z 427.8309. 2a: mp 168 °C (dec); ¹H NMR (400 MHz, CDCl₃-CS₂) δ 4.88 (d, J = 9.8 Hz, 1 H), 4.85 (d, J = 9.8 Hz, 1 H), 3.34-3.15 (m, 8 H); Anal. Found: C, 30.16; H, 2.16%. Calcd for C₁₂H₁₀S₁₀: C, 30.35; H, 2.12%. 2b: mp 184 °C (dec); ¹H NMR (400 MHz, CDCl₃-CS₂) δ 5.01 (d, J = 9.8 Hz, 1 H), 4.88 (d, J = 9.8 Hz, 1 H), 4.87 (d, J = 9.8 Hz, 1 H), 4.84 (d, J = 9.8 Hz, 1 H), 3.26-3.16 (m, 4 H); Anal. Found: C, 28.74; H, 1.66%. Calcd for C₁₁H₈S₁₀: C, 28.67; H, 1.75%. 2d: mp 137 °C (dec); ¹H NMR (400 MHz, CDCl₃-CS₂) δ 6.32 (s, 2 H), 4.87 (dd, J = 10.3, 10.3 Hz, 2 H), 3.25-3.15 (m, 4 H); MS m/z (% relative intensity) 384 (100, M⁺); calcd for C₁₀H₈S₈ m/z 383.8392, measured m/z 383.8393. 3: mp 153 °C (dec); ¹H NMR (400 MHz, CDCl₃-CS₂) δ 5.48 (d, J = 8.8 Hz, 1 H), 5.07 (d, J = 8.8 Hz, 1 H), 4.23-4.18 (m, 1 H), 4.08-4.02 (m, 1 H), 3.34-3.21 (m, 4 H), 3.03-2.98 (m, 2 H); MS m/z (% relative intensity) 458 (100, M⁺); calcd for C₁₂H₁₀OS₉ m/z 457.8218, measured m/z 457.8246.
- 6. It is noted that, in the (MeO)₃P-promoted reaction of 7 with 9a, the use of benzene in place of toluene as a solvent gave BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] as a self-coupling product in 92% yield along with the recovered 7 (80%), and resulted in essentially no yield of 2a.
- 7. Three oxidation waves in 1b, 2a,b,d, and 3 are presumably arisen from two 1,3-dithiole rings of the TTF core and the dichalcogenolane-added 1,3-dithiolane ring fusing onto the TTF molecule, but the reasons for the appearance of the fourth oxidation wave in 1b are far from being fully interpreted.
- 8. Crystal data for **2a**: $C_{12}H_{10}S_{10}$, M = 474.00, monoclinic, space group $P2_{1}/a$, a = 18.75(1) Å, b = 9.791(5) Å, c = 10.165(7) Å, $\beta = 103.73(5)^{\circ}$, V = 1812.43 Å³, Z = 4, $D_{c} = 1.737$ g cm⁻³, R = 0.0575 (Rw = 0.0924) for 3997 observed reflections.
- 9. The stoichiometry of this complex was not determined due to insufficient amount of sample for elemental analysis.
- 10. Anzai, H.; Delrieu, J. M.; Takasaki, S.; Nakatsuji, S.; Yamada, J. J. Cryst. Growth, 1995, 154, 145-150.